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The dynamic characteristics of a variable-mass elast ic  system are under 
investigation. The mathematical model consists of a slender, elastic case, 

closed at one end and open a t  the other end, with internal gas flow. 
m o d e l  represeats a solid-f uel missile. 

The 

In the preceding six-month period the problem has been formulated and 

the general equations of motion derived. 
by this report particular attention has beer given t o  the internal gas flow 

problem. Furthermore, the vertical flight case has been used t o  study the 
meaning of normal mode vibration. 
tems one cannot speak of natural  frequencies and normal modes,  i n  an ordi- 
nruy sense, although a solution i n  terms of the eigenffctions aP the cor- 
responding constant-mass system i s  assumed. 
regarded as a mathemtical convenience with no particular pwsical  signifi- 
cance attsched. 

In the six-nonth period covered 

It appears that for a variable-mass sys- 

This solution should be 
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1. Introduction 

The present semi-annual technical progess report covers the period 
December 1, 1965 - ~ a y  31, 1966. The f i r s t  semi-arnn~al technical report 
co-*ring the preceding six-month period contains the problem description 

and formlation. 
pertinent equations from the first report. 

T h i s  w i l l  not be repeated here and we shall  extract the 

The m o t i o n  of a missile, envisioned as a slender elastic body of 

variable-mass, is described by means of t h e e  rigid-body coordinates, X ( t ) ,  
Y ( t )  and e( t ) ,  and t w o  elastic-body displacements, u(x,t) in the axial di- 
rec t im and y(x,t) i n  the transverse direction. 
semi-annual report w e  extract the equations of motion, Eqs. (7.29) through 
(7.33), and the associated boundary conditions, Eqs. (7.34) through (7.36). 
The equations of motion are 

From section 7 of the first 
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- J- mcg[(x + u) cos 8 - y sin 81 d~ + mXc - mYc + F~~ = o 
0 

3 )  - m c E  + ii - ii(Y + y) - 2i(i + s;) - i 2 ( X  4- x + u)l &(.A, ax . h I - . i - mcg sin 8 + Fuc = 0 fRF - m y -  
C 

where the l a t t e r  two equations are subject t o  the bomdary conditions 

E A g = o  

E I $ = O  a2 
dX 

The equations of motion and the 

at x = 0, L 

at x = 0, L 

a t x  =o,  0 

boundary conditions involve such quan- 

t i t i e s ,  s m e  of them in an i q l i c i t  way, as the  st iffness of the shell, the 

missile MSS distribution at  anytime, drag forces as w e l l  as internal viscous 
effects, mss fluw rates, internal pressure and f lu id  velocity distribution, 
etc. 
of the vehicle one must have additional relations at his  disposal. 

ternal fluw problem of a missile is a relatively complex problen i n  itsel9 

even for the case in which the missile is stationary. An approximation of 
constant chanber pressure is often used, together with the resulting l inear 

It follows tha t  t o  be able to investigate the dynamic characteristics 

The in- 
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velocity distribution of the gas flow. 
drop due t o  flov acceleration as well as the effects of i n t e n d .  f r i c t i o n  

and, in addition, the fact  that the control volume is accelerating. 
assuxptions of constant pressure and linear velocity w i l l  be exanined. The 
terms resulting f r o 3  the internal gas flow which appear in the equations of 
motion cas be regarded &s forcing functions. 

Ybis assuqtion ignores the pressure 

The 

We shall make the assumgtionthat ini t ia l ly  the mass distribution is 
uniform and, furthemore that rate of fuelburning is the same for  any 
point i n  the missile which implies that the burning rate is  inde2endent of 
pressure and temperature. 
on the spatial  coorikinate x but only on the time t 

As a result, the mass distribution does nut depend 

This also implies that the center of mass of the missile does not shif t  with 
respect t o  the missile. 
the missile, at the ha l f -way  point betrreen the ends of the missile, we shall  
find it convenient t o  measure x f'roxlthe center of the missile instead of 

the aft end. This fact  becmes imnediate3y evident since in this  case we 

have s"/' mc x dx = 0. One should also note that, in the process, X ( t )  and 

Y ( t )  becoxe the coordinates of the center of mass. 

Since the center of mass is stationary relative t o  

-L/2 
. 

The equations of notion, EQs. (1.1) through (1.5) are highly nonlinear 
and coupled. To add t o  c0;rrPlexity the mass distribution is time-dependent. 
The closed forn solution of the equations in  the present form is not possible. 
The purpose Or this resea.rch is t o  study the aynanic characteristics o? the 

missile so that an analysis, even under simpl i fy ing assumptions, is highly 
desirable. 
obscure these characteristics but, nevertheless, w i l l  be perfomed t o  check 
the validity of the ass~m~ptions. 

. 

An entirely numerical solution of the eqmtions would tend t o  



If 

. *  

The fl ight of many sounding rockets con- 
We shall  sists of a verbical, upright flight. 

be interested in studying this case i n  more 
detail  and, t o  this end, we wish t o  define a 
primary motioa" as the vertical  rigid-body 

flight of the vehicle. 
primary notion will form 2 "secondmy motion" 

and will be regarded as small perturbations. 
Finally, the equations of motion are Linearized 

by assuming s d  elastic displacements. 

t "  
f "  

Y -  ~ =; 11 

The deviations fran the 

Y 3 
Figure 1 

'Although in their  final forn the equations of motion are linear, their  
solution is  by no mans aa ordinary task. It should be recalled that the 
mass distribution is  time-dependent and the vast majority of l i terature 
treating the subJect of elastic missiles is concerned 16th constant-nzss 
systems. 
cepted sense, f o r  the elastic motion have no pbysical meaaing. 
one still can use a series solution using the eigenfunctions of a related 

constant-mass system for the purpose of eli-ting the spatial  variable x 

fromthe partial differential equations f o r  the elastic axid and transverse 
motions. Two sets of ord invy  differential equations with tine-dependent 
coefficients, one f o r  the axial notion and one for  the transverse notion, 
are obtained. Fortunately, due t o  the uniforn-mass assumption, the set  of 
equations f o r  the a x i a l  notion is  uncoupled axid a solution can be obtained 
without much difficulty. 
transverse notion is coupled and, in addition, some of the coefficients con- 

For variable-mass system, the normal modes, in the cormonly ac- 
Nevertheless, 

h the other hand, the set  of equations for the 

sist of axial notion terms. A closed forn solution of such a se t  i s  not 
possible. 

term corresponding t o  the f i r s t  eigenfunctior and the transverse terms cor- 
responding t o  the f i r s t  two eigenfunctiorssince, f o r  such a case, the set  
of equations for the t m v e r s e  notion consists of two uncoupled equations. 
This solution w i l l  be checked against an entirely numerical solution of the 
problem t o  verif'y t o  w h a t  extent one can justify using such a s d  number 
of terms t o  describe the axial a d  transverse m%ions. 

One can obtain a solution, harrever, by retaining only the axial 
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It should be pointed out that, &thou@ sone vibration is obtained, 
this is not a nornal mode vibration. 
i n  the ordinary sense. 
corresponding t o  the related constane-mass system t o  expedite the solution 
should be regarded as a mathematical device with no particular physical 
significance attached. 

The system has no natural frequencies 
The fact  that ue use eigenfunctions aad eigenvalues 

2. The Internal Flaw Problen. 

From the point of view of fluid f lm problem, the missile w i l l  be re- 
garded as a cylindrical container of uniform cross-section, open through a 
nozzle at the end x =-L/2 and closed at the end x = L/2. 
that the nozzle length is relatively short compared Ksth the length of the 
missile. 
negative x-direction so that at any point x the flow rate w i l l  be equal t o  

the total rate of change of mass between the point x and the closed end. 
Denoting t h i s  quantity by l&(x,t) (note that according t o  the previously 
used natation &(-L/2,t) = I&) and using the continuity eqwtion f o r  the 
fluid, we have 

We shall assume 

Since the end x = L/2 i s  closed, the burned fuel will flow in the 

where 5 is a dumqy variable of integration, pF is  the fluid density and +the 
fluid cross-sectional area. The negative sign accounts for the fact  that 

the f l o w  is in the negative x-direction. 
assume that the pressure in the bmdng M e r  is uniform (Ref . 4, p.42) 

As a first approxination, one may 

and that the flow is frictionless. Hence, pF w i l l  be constant and, assuning 

that + is constant, we have 9 = p~ 4 = const. U s i n g  Eq. (log), we obtain 

so CQat v(x,t) is a linear m c t i o n  of x. 
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One must also &e some a s s q t i o n s  as t o  the mss flow rate as a func- 
This w i l l  be largely deternined by the grain confi,.-uration, i n  tion of tine. 

addition t o  inhibitors, pressure transients, etc. A simple cylindrical 

grain shape results i n  appraximately ''neutral burning" whereas various cruci- 
form or multiple grain forms m y  be des-ed t o  give either "progressive" or 

Typical mass f l a r  rates amenable to andlytic treatment 

may be approximated as sham by a rectangular function, or s l i@t ly  more 
accurately by a trapezoidal function (see Ref .  1) 

regressive" burning. ?I 

t - t i m e  
Figure 2 

Let us for the moaent r e l a t h e  unifom pressure assunption and derive 
To an expression of the pressure as a f'unction of the spatial  coordinate x. 

this end we use the equation of notion for the fluid elenent (see Eq. (5.2) 
of the first semi-annual report), which for  the axial fluid flow and planar 
missile notion reduces t o  

Concentrating on the axial component and assuming steady-state, frictionless, 
constant-area flov,Eq. (2.3) yields 



.. 
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.. 
Assuming that Rc is known, we have one equation and three unknowns, p, 

and v. 
as known, as is + if the bdng rate of the propellant is h a m  (assumed 

independent of pressure and time). 

assuming a perfect gas 

An additional equation is  Eq. (2.1) w h e r e  &(x,t) should be regarded 

A third equation can be obtained by 

whichintroducesthe absolute t q e r a t u r e  T as a new unknown, since the gas 
constant R is  assuined as known. 

tions; ve have the fo l lmc ing  relations 
Consistent with the perfect gas assump- 

cP 
cy Y 

= -  Cp - Cy = R, 

where Cp and Cy are the specific heats and y is the specific heats ratio. 

The above equations can be supplemented by the energy-heat relations 

h + $ v2 = %le, h - hr = Cp T 

where h is the enthlpy at any point and h L/2 is the enthalTy at  the closed 
end of the missile. 
grating Eq. (2.4) and using Eqs. (2.1) a d  (2.5), we obtain 

The reference enthalpy, h,, can be taken zero. Inte- 

& r 2 + f ' 2 G i  m c  . T a g  
p = PL/2 - RT X 

In addition, Eqs. (2.1), (2.5) and (2.7) yield 
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which is a quadraticequation i n  v. 
troduce into ~ q .  (2.8) t o  elininate i ts  dependence on V. In  most cases the 
contribution of the integral  in Eq. (2.8) is relatively smaU and therefore 
neglected- Thfs is equivalent t o  assuming an unaccelerated control volume. 
Ignoring the integral in Ep. (2.8) and introducing Eqs. (2.6)y as w e l l  as 
the expression of v from Eq. (2.9), into Eq. (2.8) we obtain 

One can solve Eq. (2.9) for  v and in- 

wbich agrees trlth Price (see Ref. 3) 
Next l e t  us examine the relative magnitude of the integral in (2.8). 

0.95 pL12, or a 55 pressure loss due 

To determine the magnitude of the noninertial term, we need 
is  

For a 10 in.-Uameter missile of approxi- 

For a typical high-acceleration missile w i t h  a mixinnun Mach number in the 

combustion cha&er of 0.4 we have p 

t o  the f l o w  acceleration. 
Llp = 100 psi. 

Rc . i. 
sign-variable we can ignore it. 
mately 100 in. length, 425 1'. weight a d  subjected t o  %12 = 2000 psi, the 
linear acceleration X will be of the order of magnitude of 5000 f t  sec'2y 
depending on the nozzle configuration, drag, etc. Assuming the fluid den- 
sity pF t o  be essentially uniform, t i e  

change 

For %12 = 2000 psi  the pressure drop amounts t o  

.. - .. .. - *. 
For no rotation, 8 = 6 = 0, we have xc . i = X f and since 

*. 

noninertial term produces a pressure 

42 s"' pF x -- dx = g psi 
4 2  

which is about 0.5$ of the to t a l  pressure, hence, insignificant. Note that 

t h i s  is a pressure increase rather than a pressure drop so that it tends t o  
render the pressure more uniform. 
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The magnitude of the friction term ym nay be estimated by assuming 
a value for the friction factor, f = 0.005 (see Wilrrpress, p. 33) and again 
assuming urdf'orm pF. 
pressure drop due t o  friction can be written as 

Denoting by z the perimeter of the flow area the 

dx = 3.3 ps i  

. is again very s m a l l .  

Hence, the uniform pressure and linear velocity assumptions appear t o  
be fa i r ly  reasonable. 

3. The Vertical, Upight  Flight. 

We shall assume that the vertical, upright f l ight (see Figure 1) con- 
sists of' a primary motion defined by the rigid-body vertical f l ight  and a 
secondary motion defined as a perturbation about the primary motion. With 

th i s  in mind, one can s i m p l i f y  Eqs. (1.1) through (1.3) by assuming X >> Y, 
X > > 9  and9 
ignored. 

so that second and higher order terms i n  Y and 8 axe n = 2' 
These assumptiom lead to the' equations 
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Equations (3.1) through (3.3) can be further simplified by assuming that the 
average elastic motion (even when multiplied by a weighting function) is  

zero and that the elastic displacements are sufficiently snmll so that sec- 
ond order terms can be neglected. With these assumptions, we obtain I 

- Mc(Y + 2e'i + ex) - fI2 Fm j dx + Fyc = 0 
-L/2 

- 
mcx dx - (fm . j) x dx + YFX, - mYc + FeC = 0 

which establishes the rigid-body nature of X, Y and 8 . 
For no engine gimbal angle, we have 

- s"'" zm j dx = 0 
4 2  

(3.5) 

which implies that there is no transverse conponent due t o  f luid flat.* 

Furthermore, for the study of the dyna.mic characteristics we shall  concen- 
trate on the equivalent of the free-vibration case and ignore the external 
forces 

A A 

*The Coriolis effect i s  accounted separately. 



SO that the Last Osro of Eqs. (3.4) are identically satisfied by 

Y = Q = O  

whereas the first one yields the a x i d  acceleration 

4. The Elastic Motion. 

'In view of the results and assumptions of the preceding section the 
equations for  the elast ic  notion, Eqs.  (1.4) and (1.5) become 

w h e r e  the axial  force, P, is  given by 

au 
P = E A c a x  

Equation (4.1) is  subject t o  boundary conditions (1.6) asd Eq. (4.2) t o  

boundary conditions (1.7) . 
It must be noted, at this point, that the differential  equation and 

the boundary conditions for  the ax ia l  e las t ic  displacement u(x,t) do not 
contain the transverse elast ic  displacement y(x,t). 
differential  equation and the boundary conditions for  y(x,t) do contain 

u(x,t), as can be seen from the  expression for  P. 
solve for  u(x,t) and then for  y(x,t). 

On the other hand, the 

Hence, one must first 

Let  us assume the solution of Eq. (4.1) i n  the form of the series 

n 



where a 

solutions of the eigenvalue problem coasisting of the differential  equation 

( t )  are the-dependent generalized coordinates and'pi (x) are the -i 

I 

and the boundary conditions l 

e!!! = 0, x = -L/2, L/2 dx (4.6) 

This eigenvalue problem corresponds t o  the a x i a l  vibration problem of a rod 
of mass per unit length moo 

= 613' where 6iJ is the Kronecker delta, and, in  addition JL'2 mo tpi d~ = 0. 

The latter expression is consistent with the zero average elast ic  motion 

postulated i n  the preceding section. 
mass per unit length of missile, hence independent of x. 
burning assuned i n  Section 2 we conclude t h a t  the distributed mass at any 
t3m.e is 

J~'* mo ViYJ  dx The functions 'pi are such that 

-L/2 

4 2  

In t h i s  case II+, is taken as the initial 

From the uniform 

mc( t )  = mo - GCt = m 0 (1 - B t )  (4 -7) 

where 8 = Thc/mo. 
semi-annual report the sign of the MSS increment w a s  such that $ must be 

regarded as positive although the system loses mass. 

the flmctionstpi satisfhy Eq. (4.5), we obtain 

Note that  i n  the derivations of Section 2 of the first 

Introducing Eqs. (4.4) and (4.7) into Eq. (4.1), and recalling that 

n 

i=1 



Multiplying Eq. (4.8) by cpj and integrating over the length of the missile 
we obtain a set of uncoupled ordinary differential equations 

2 ( 1 - B t )  qi + wi % = Ui(t) ,  (i=1-,2,---,n) (4-9) 

where 

(4.10) 

play the role of generalized forces and contain terms due t o  vehicle accele- 

ration and internal gas f low.  
steady-state situation consisting of constant burning (see Figure 2), the 
t h e  dependency of Ui( t )  may be assumed in the form of a step function for  

the duration of the powered flight. 

Due t o  the relatively rapid transition t o  a 

By making t he  substitution 1 - B t  = T~ in the  homogeneous part of Eq. 

(bog), we obtain 

which has the solution 

where J1 and Y1 are Bessel functions of the first order and first and second 

kind, respectively. The solution of Eq. (4.9) cazl be written i n  the form 

q p )  = ( 1 - B t )  "%C L fi J 1 (A i Jm + CZi Yl(Aidmr] 

'i + 7, (i = 1,2,---n) 
* 

i 
W 

where Ui i s  the amplitude of Ui( t )  and Cli and C 2 i  are constants of inte- 

gration which are determined by the initial conaitions. 

conditions be 

Letting the init ial  
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and denoting 

(4.14) 

rl2 m 0 
4 2  

it can be shown that the 

uo(x) cp,(x) d~ = uoiy (i=lY2,---,n) (4.15) 

solution for  the axial elastic displacement is 

(4.16) 

Since h i  >> 1 we can use asymptotic expansions for Bessel functions of large 

argument snd reduce Eq. (4.16) t o  

where the square bracket can be identified as qi(t). 

As i n  the case of the axial motion, we assume that the transverse elastic 
displacement canbe written in the form of the series 

Now we are in the position t o  attempt a solution for the motion y(x,t). 

j=l 
(4.18) 

where 7 .(t) are generalized coordinates and 4 .(x) are eigenfunctions obtained 
f routhe  solution of the eigenvalue problem defined by the differential 

equation 

3 J 



and the bmdary conditions 

E I - = O  d2* a d  =( 31- d2$ *2) = 0, x = 4 2 ,  L/2 
ax2 

m $.$ dx = bij, m O * j a x = o  
O 1 3  

The Functions t j  are such that 

and J . mo x t j  dx = 0 where the latter two expressions justLf'y some of 
-L/2 

the shplifica,tions in  the equations for the rigid-body motion obtained in 

the preceding section. 

Eq. (4.19), we obtain 
Introducing Eqs. (4.3), (4.4), and (4.18) into Eq. (4.2), and recalling 

j=l i=l j=1 

Multiplying Eq. (4.21) by qr and integrating over the length of the missile, 
we obtain 

n n  
(4.22) 

i=1 j=l 

where 

In view of the boundary condition, Eqs (4.6), Eq. (4.23) reduces t o  

(4.24) 
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Unlike the set  of equations f o r  the axial nation, the set of equations 
By retaining a l imited for  the transverse notion, Eqs. (4.22), are coupled. 

nmiber of terms i n  the e.-mar,sions (4.4) md (4.18) one can uncouple Eqs. 

(4.22). To this end., we notice tht when the integrand in E q .  (4.24) is an 
odd fbc t ion  the in tegrd  is zero. But vi is odd if i is odd a d  Q, is odd 
is r is even and vice-versa. 
are even functions their derivatives are odd functions and vice versa. 
Hence, one can write 

I n  addition, Ti and Cpr a r e  such that if they 

( t )  = Pm(t) = 0 (4.25) 

so that retaining only the first term i n  series (4.4) and the first two 
terms in series (4.18), Eqs. (4.22) reduce t o  

which are uncoupled. 

Consider the typical equation 

m 
(1-st) i j  + r2"q - (l stk) 7 = 0 

(4.26) 

(4.27) 
k=Q 

and use the Frobenius method t o  obtain a solution. 
solution of Eq. (4.27) have the forn 

To this end we l e t  the 

W 

(4.23) 



SO that  
m OD 

2 - ~  ~ ( n + s )  ( n + s - l ) t n + S - l  n + s -  
n Bn(n + s ) (n  + s -1)t 

n=O n=O 

n=O n=O 

which can be written as 
m Q) 

n=O n=l 

W 
OD t n + s - 2  p + s - 2  

n=3 
+ (8 - QJ L Bn-2 - Q1 Bn-3 

n=2 

n=4 

The above equation is  satisfied i f  

Bo S(S-1) = 0 

B1 (S + 1) s - 8B0 S(S - 1) = 0 

Bg (S + 2 ) ( ~  + 1) - BB1(s + 1) s + Bo(# - Q) = 0 
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Letting a solution be given by 

s = 0, Bo and B1 arbitrarcy 

we can obtain from Eqs. (4.29) all  of the coefficients %, n 2 2, in terms 
of Bo and % where the Latter play the role of constants of integration. 
For s = 0, Eqs. (4.29) can be written in the form of the recurrence fornula 

m 
1 

9 

n - 2  B , = B y - - -  + 1 ?Is Bn-2-k 

k=l 

n 2 2, Bi = 0 for i negative 

Equation (4.30) yields 

B2 = - - 1 ($-%)Bo 
2 

and upon introducing the above coefficients into Eq. (4.28) we obtain 
- 

03 

- 1 (ri? - Qo) Bot2 + @ [-f3(C? - %) ‘I) =z Bntn = Bo + Blt 2 



I .  

* .  I 

Hence,. one can write the solution of Eqs. (4.26) i n  the form 

where  

and B 
from the ini t ia l  conditions. 

tain 

and Bljy ( j  = 1,2), are constants of integration t o  be determined 03 
Ihtroducing Eq. (4.31) into Eq. (4.18) we ob- 

2 
c 

j=1 

Letting y(x,O) and $(xyO) be the i n i t i a l  transverse displacement and velocity, 

respectively, we obtain without difficulty 

J / 2  (4.34) 
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It appears that, for  no external forces, y(x,t) can be zero if the ini- 
tic cmdLtiuris are zero or they are proportional t o  either $ .(x) or x 0 (x), 3 s 
(3 22). 

5- Results 

The equation 

is not particularly anenable t o  numerical calculation because of the ex- 
tremely large argument of the cosine term. 
radical in the above term may be expanded by means of the binomial expan- 
sion formula t o  give 

Hwever, for small  tine, t, the 

so that for t << 1, we may neglect the ( f 3 t ) 2  and all higher order terms in 

t, as w e l l  as set  

(5.3) 1/4 N (1 - B t )  = 1 

so that a simplified expression for u(x,t) appars as 

u(x,t) z f 
j=1 

Although this  form bas definite u t i l i ty  f o r  the calculation of the a x i d  dis- 

phcement for very small t, it neglects the change in the frequency and am- 
plitude of vibration as a function of time due t o  the change i n  the mass. 

Emever, we are interested i n  u(x,t) for  the entire period of burning since 
it is required f o r  the calculation of y(x,t). 



With this i n  mind, a simple computer propan has been w i t t e n  f o r  the 
Control Data 3400 d i g i t a l  computer. 
of Young's nodulus, length and area of the missile case, area of the fluid, 

nozzle throat area, and internal f luid pressure together w i t h  the mass per 
unit length and the time rate of chmge of the mass per un i t  length of the 
missile. 
order t o  be able t o  evaluate the rate of convergence of the series. 
output consists of values of the axial  elastic displacement a t  discrete in- 
tervals of x for discrete values of time from time = 0 t o  burnout. The 

time increment is determined fronthe relation 

hpu% t o  the program requires values 

The mmiber of' terms in  the series is also read in as input i n  
The 

where h is the spatial 

so that a sufficiently 

(5.5) h 7 = -  
C 

increment and 

c =  (5.6) 

large number of deflected shapes are obtained over 
a cycle t o  ensure representative coverage. Results for  1, 2, 10, and 20 

term series have been obtained for a typical solid fuel missile w i t h  the 
following pbysical properties : 

6 2 E = 3 O  10 Ib/in 

2 Ac = 7-53 in 

2 $ = 36.4 in 

2 pcr = 18.2 in 

II+, = 0.Ol.l l b  sec2/in2 

6 = 0.004 lb sec/in2 
C 

L = 100 in 

= 2000 lb/in2 
%/2 
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For 9 increments of length, a t i m e  increment of approxinately 0.000078 sec 
results. 
in the series a t  a typical time appears in Figure 3, while Figure 4 shows 
the deflected shape of the missile at several selectedtimes through one 

A comparison of the deflected shape for different n e e r s  of t e r m s  

cycle 

6. Conclusions and Plans for Future Work 

The five coupled, nonlinear equations of motion of a solid fuel missile 
were  derived in the first semi-annual technical report. In the present re- 
port, the problem or” the internal f luid flow has been investigated in  order 
t o  determine a suitable pressure and velocity distribution within the missile 
case. To this end, the effects o f the  pressure drap due t o  fluw accelera- 
tion, the pressure increase due t o t h e  noninertial acceleration of the con- 
trol-volume, and the pressure drop due t o  friction together with the subse- 

quent effect on the velocity distribAion were investigated. 
reached was  that the assumption of uniform chamber pressure and linear 

velocity distribution was reasonably justified. 

The conclusion 

A primary motion in the vertical direction was then postulated w i t h  the 
lateral rigid-body translation, the rigid-body rotation and the elastic de- 
formations i n  both the a x i a l  and lateral  directions considered as second 
order effects. A solution for the axial elastic deformation was then ob- 
tained in the form of a series o f t h e  eigenfunctions of the corresponding 
constant-mass systems Inultiplied by time-dependent generalized coordirrates 
whose amplitudes were determined by means of the initial conditions and the 
forcixg functions resulting from the fluid f low.  
although the eigenfunctions of the constant-mass missile are used, th i s  is 
merely a mathematical concept and does not imply normal m o d e  vibration. 
the contra-ry, the system does not possess any natural frequencies i n  the 
ordinary sense, and the amplitudes axe not constmt a t  a given period i n  
different cycles. 

It should be stressed that, 

On 

Unfortunately, the same series approach t o  the la teral  vibration re- 
sulted i n  coupled equations due t o  the presence of the axial force in the 

equation for y(x,t). In order t o  uncouple these equatiorrs, it IELS necessary 
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t o  assume that the deformtion i n  the axial direction could be approximated 
by the first tern of the series f o r  u(x,t) and the first two terns of the 

series for  the la te ra l  motion y(x,t) Of final consequence, it vas shown 

that no l a te ra l  elastic m o t i o n  resulted mder the assumed initial conditions 
g(x ,o)  = f (x ,o)  = 0. 

The f inal  phase of t h i s  project w i l l  consist of a completely numerical 
solution of the original f ive cotrpled, nonlinear equations of motion. 
differences w i l l  be used together with numerical integration and an intera- 
t ive sequence t o  cope with the nonlinearity of the equations. 
solution is obviously i n  order w i t h  t h i s  approach and the Control Data 900 
w i l l  bk utilized. 
r igid body motions as opposed t o  the e l a s t i c  motions w i l l  not be necessaq-, 
it is envisioned that the sane assumptions concerning the f l u i d  flow w i l l  be 
used as are used i n  the present report. 

Finite 

A computer 

While assumptions as t o  the r eh t ive  magnitudes of the 
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